§ 192.115 | Specification | Pipe class | Longitudinal joint factor (E) | |-------------------|---|-------------------------------| | ASTM A 106 | Seamless | 1.00 | | ASTM A 333/A 333M | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | ASTM A 381 | Double submerged arc welded | 1.00 | | ASTM A 671 | Electric-fusion-welded | 1.00 | | ASTM A 672 | Electric-fusion-welded | 1.00 | | ASTM A 691 | Electric-fusion-welded | 1.00 | | API 5 L | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | | Electric flash welded | 1.00 | | | Submerged arc welded | 1.00 | | | Furnace butt welded | .60 | | Other | Pipe over 4 inches (102 millimeters) | .80 | | Other | Pipe 4 inches (102 millimeters) or less | .60 | If the type of longitudinal joint cannot be determined, the joint factor to be used must not exceed that designated for "Other." [Amdt. 192–37, 46 FR 10159, Feb. 2, 1981, as amended by Amdt. 192–51, 51 FR 15335, Apr. 23, 1986; Amdt. 192–62, 54 FR 5627, Feb. 6, 1989; 58 FR 14521, Mar. 18, 1993; Amdt. 192–85, 63 FR 37502, July 13, 1998] ## § 192.115 Temperature derating factor (T) for steel pipe. The temperature derating factor to be used in the design formula in §192.105 is determined as follows: | Gas temperature in degrees Fahrenheit (Celsius) | Tempera-
ture derat-
ing factor
(T) | |---|--| | 250 °F (121 °C) or less | 1.000 | | 300 °F (149 °C) | 0.967 | | 350 °F (177 °C) | 0.933 | | 400 °F (204 °C) | 0.900 | | 450 °F (232 °C) | 0.867 | For intermediate gas temperatures, the derating factor is determined by interpolation. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37502, July 13, 1998] #### §192.117 [Reserved] #### §192.119 [Reserved] ### § 192.121 Design of plastic pipe. Subject to the limitations of §192.123, the design pressure for plastic pipe is determined in accordance with either of the following formulas: $$P = 2S \frac{t}{(D-t)} 0.32$$ $$P = \frac{2S}{(SDR - 1)} 0.32$$ Where: P=Design pressure, gauge, kPa (psig). S=For thermoplastic pipe, the long-term hydrostatic strength determined in accordance with the listed specification at a temperature equal to 73°F (23°C), 100°F (38°C), 120°F (49°C), or 140°F (60°C); for reinforced thermosetting plastic pipe, 11,000 psi (75,842 kPa). $t=Specified\ wall\ thickness,\ mm\ (in).$ D=Specified outside diameter, mm (in). SDR=Standard dimension ratio, the ratio of the average specified outside diameter to the minimum specified wall thickness, corresponding to a value from a common numbering system that was derived from the American National Standards Institute preferred number series 10. [Amdt. 192–78, 61 FR 28783, June 6, 1996, as amended by Amdt. 192–85, 63 FR 37502, July 13, 1998] # §192.123 Design limitations for plastic pipe. - (a) The design pressure may not exceed a gauge pressure of 689 kPa (100 psig) for plastic pipe used in: - (1) Distribution systems; or - (2) Classes 3 and 4 locations. - (b) Plastic pipe may not be used where operating temperatures of the pipe will be: - (1) Below $-20^{\circ}F$ ($-20^{\circ}C$), or $-40^{\circ}F$ ($-40^{\circ}C$) if all pipe and pipeline components whose operating temperature will be below $-29^{\circ}C$ ($-20^{\circ}F$) have a